Home > Carrageenan, Emulsions, Molecular gastronomy, Transformations, viscosity > Molecular gastronomy – oil and viscosity

Molecular gastronomy – oil and viscosity

Hello everyone,

It’s been awhile since I’ve posted material here on molecular gastronomy. I’m happy to announce that my absence was based on my recent trip to visit Molecular Chefs Jose Andres and Masterchef Ferran Adria!!!

I learned way too much and can’t wait to share with you ALL!

Another great piece of news I’ve got is my new molecular kitchen device.

Here is my new Toy: The Thermomix

Now to bore you with the MAD food science I learned while away. FYI, there are some great recipes past the science if you want to just scroll down. Enjoy!

Oil and viscosity

Molecular viscosity : v = l x c

elasticity: E = kBT/l³

 

When talking about the elasticity you got to imagine a spring. Imagine how the spring stretches and you will obverse its elastic constant. What makes foods soft, squishy or flow easily is critical to all aspects cooking. It is for this reason that we must examine the properties of elasticity and viscosity when dealing with food.

 

Here is an example of the elasticity of a raw thaw steak:

Elastic constant of a steak

E = F ⁄ A L ⁄ ΔL

E= 8,000 Pa

The amazing formula is as follows:

E =kT ⁄ l³

 

Elasticity                                            /                           / (volume)

Before Cooking (RAW) 8×10³ Before 8.1 nm        Before 8.1 nm

After Cooking (Cooked) 5×10⁴ After   4.4 nm        After 6.8 nm

The stiffness of a material depends on the length between bonds .

Energy of bonds times their density

Stretching bonds to deform the solid

Units – Energy density

 

Viscosity

A material is a liquid if the molecules can move around each other

The fundamental quantity that governs this is the time that it takes for molecules to move around their neighbors.

If it takes a long time to move by each other, the material is very viscous.

If it takes a short time, the material is less viscous.

Example: Olive Oil

Olive oil and viscosity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It takes longer for the molecules to move through olive oil than water because it has a higher viscosity.

 

Molecular viscosity

length²/time           v = l x c

where v = length

c = length ⁄ time

Very important Equations:

Molecular viscosity: v = l x c

elasticity: E = kBT ⁄ l³

Let’s look at the viscosity of hot oil

Hot oil flows faster than cold oil

Viscosity decreases with increasing temperature

Molecules move around each other more easily

 

Let’s look at how using a thickener helps make liquids thicker

Xanthan Gum makes liquids thicker

Xanthan Gum (E415): makes food thick and creamy; also stabilizes foods to help solids and liquids stay together

You could see Xanthan Gum is sauces, low fat or non-dairy, and dressings.

The reason thickeners works?

Thickener is a polymer

Polymer forms network in the water

This forms a solid gel

Note: The bonds in gels are not permanent

Molecules can move

Molecules must disentangle to move

This is important because it means if you form a gel you could easily manipulate it by shredding it in a thermomix or blender.

doing this will change the viscosity by either a small percentage or a large one.

Let’s get into some recipes with some molecular ingredients:

Soft Creamy Jelly

You will need:

100g of water, fruit juice, or wine.

2.5g iota

100g of olive oil (extra virgin)

Procedure:

You will need to bring water to boil and stir in iota, whisking constantly. Take the saucepan out of the warmer and slowly add the olive oil, stirring constantly.

Pour mixture into molds and allow to cool.

Once it has set you could slowly remove the olive oil jelly from the mold


Finally, serve on bread with tomato and jamon iberico.

 

For the next recipe you will make Olive oil gummie bears

You will need:

150 g extra virgin olive oil

7.5g xanthan gum

7.5g locust bean gum

310g glucose

160g sugar

10g water

For the procedure you will need to use your thermomix at speed 3, veroma 100 C for 5min. Mix all ingredients.

Once the mixture is complete transfer to piping bag and pipe little goblets over cornstarch.

Completely cover with a thin layer of cornstarch.

 

 

 

 

 

Advertisements
  1. mary
    January 21, 2011 at 11:31 am

    nice .. I would like to chat with you more on this and maybe do some experiments together — the fun is in the creating .. the possiblities are endless 🙂

  2. February 27, 2011 at 10:39 am

    Hey,

    That is awesome! How did you manage to get a dinner with Ferran and Jose? I too maintain a molecular gastronomy website (http://toastable.com) and love the experiments you’ve done!

  3. Mikko
    April 26, 2011 at 4:07 am

    I truly enjoy your blog and look forward to seeing your other experiments. Do you work with Kappa much? The reason i ask is that I have been trying to make fruit caviar with it but do not have a solid recipe/formula.

  4. May 25, 2011 at 4:53 pm

    congratulation nice blog and very nice explained recipes. Keep on with this nice work.

  5. July 19, 2011 at 10:03 pm

    Viscocity decreases when the temperature is raise because the distance (length) between the molecules decreases which is in direct coorelation with the viscocity?? I fall into viscocity problems with my macaron fillings and am looking into molecular techniques now to circumvent some of my issues surrounding humidity (H20) and pastry. Very cool web site which I will now follow in the hopes of catching on to all the little “tricks of the trade”. Thanks for sharing.

  6. June 21, 2012 at 7:00 pm

    That stake looks fantastic. Hey Tali you may wish to sell our Molecular Gastronomy Kits – secret launch on the 1st of July for http://www.molecularfoods.com.au.

  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: